МЕХАНИЗМ РАСТВОРЕНИЯ ЗАЩИТНЫХ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ ПРИ ХИМИЧЕСКОЙ ОБРАБОТКЕ ДЕТАЛЕЙ ЭНЕРГОМАШИН
Смольникова О.Г. , Беляева Л.С.
2018 / Том 8, номер 4 [ ХИМИЧЕСКИЕ НАУКИ ]
Цель - на основе анализа экспериментальных данных по удалению алюминидных покрытий сформировать представление о процессах, протекающих на поверхности обрабатываемой детали при химическом травлении. Алюминидные покрытия представляют собой совокупность интерметаллидных фаз (NixAly, MxCly, MxSiy) и элементов различной химической активности (α-Cr, α-W, Si, Y). Эффективность удаления дефектных покрытий (скорость процесса, качество обработанных деталей) определяется соотношением компонентов раствора, стимулирующих или замедляющих электрохимические реакции в системе «раствор - покрытие - сплав». Показано, что ионы Cl- способствуют активному растворению матрицы покрытия NixAly, тогда как адсорбция (NO3)- может быть как стимулирующей, так и пассивирующей. Скорость растворения фазы β-NiAl определяется скоростью выхода в раствор наиболее активного компонента покрытия - ионов Al3+. Растворение фазы γ΄-Ni3Al лимитируется образованием гидратированных ионов Ni2+. Удаление коррозионностойких фаз MxCly,MxSiy происходит вследствие ослабления их связи с матрицей покрытия. Поведение ионов (Cr2O7)2- соответствует классическим представлениям: являясь эффективным деполяризатором, ускоряет процесс травления покрытий; адсорбируясь на поверхности никелевого сплава, предотвращает его растравливание. Высокие скорости растворения покрытий в присутствии (NH4)6Mo7O24, не обладающего ярко выраженными окислительными свойствами, обусловлены возможными превращениями (NH4)6Mo7O24 до (MoO2)2+ и (MoO4)2- с последующим восстановлением до MoO2 и дальнейшим его окислением до (MoO2)2+.
Ключевые слова:
жаростойкие покрытия,химическое травление,раствор травления,механизм удаления алюминидных покрытий,heat-resistant coatings,chemical etching,etching solution,aluminide coating removal mechanism
Библиографический список:
- Абраимов Н.В., Елисеев Ю.С. Химикотермическая обработка жаропрочных сталей и сплавов. М.: Интермет Инжиниринг, 2001. 620 с.
- Мубояджян С.А., Галоян А.Г. Диффузионные алюминидные покрытия для защиты поверхности внутренней полости монокристаллических лопаток турбин из рений- и ренийрутений содержащих жаропрочных сплавов. Часть I // Металлы. 2012. N 5. C. 10-19.
- He L., Yu C.H., Leyland A., Wilson A.D. A comparative study of the cyclic thermal oxidation of PVD nickel aluminide coatings // Surface and Coatings Technology. 2002. V. 155. P. 67-79.
- Панков В.П., Павлоградский С.А., Панков Д.В. Удаление покрытий с рабочих лопаток ГТД // Ремонт, восстановление, модернизация. 2006. N 4. С. 33-37.
- Попова С.В., Добрынин Д.А., Мубояджян С.А., Будиновский С.А. Удаление жаростойких конденсационно-диффузионных покрытий с поверхности лопаток ГТД до и после наработки // Труды ВИАМ. 2017. N 1(49). С. 32-40. DOI: 10.18577/2307-6046-2017-0-1-4-4
- Пат. 2200211, Российская Федерация, МПК С23F1/16. Способ удаления покрытий с деталей из жаростойких сплавов / Ю.С. Елисеев, А.М. Душ-кин, Ю.П. Шкретов, Н.В. Абраимов; заявитель и па-тентообладатель ФГУП ММПП «Салют». 20011 06171/ 02; заявл. 07.03.2001, опубл. 10.03.2003. Бюл. № 27.
- Ruud J.A, Kool L.B. Method for removing oxides and coating from a substrate. Patent of US, no. 6863738, 2005.
- Stratton E.W. Chemical stripping composition and method. Patent of US, no. 8859479, 2014. Невьянцева Р.Р., Быбин А.А., Смольникова О.Г. Разработка универсального раствора для уда-ления алюминидных покрытий с лопаток газовых турбин и его апробация в ремонтном производстве // Вестник Уфимского государственного авиационного технического университета. 2016. Т. 20, N 1. С. 26-32.
- Семенова И.В., Хорошилов А.В, Флорианович Г.М. Коррозия и защита от коррозии. М.: Физматлит, 2006. 376 с.
- Невьянцева Р.Р., Быбин А.А., Смольникова О.Г. Закономерности удаления внешней и внутренней зон жаростойкого алюминидного покрытия с длительной наработкой при ремонте лопаток ТВД // Вестник Уфимского государственного авиационного технического университета. 2008. Т.10, N 1. С. 127-130.
- Шеин А.Б., Ракитянская И.Л., Вилесов С.П. Влияние состава коррозионной среды на анодное растворение силицидов металлов триады железа // Известия высших учебных заведений. Химия и химическая технология. 2010. Т. 53, N 2. C. 81-83.
- Lukanova R., Stoyanova E., Damyanov M., Stoychev D. Formation of protective films on Al in electrolytes containing no Cr6+ ions // Bulg. Chem. Commun. 2008. V. 40. No. 3. P. 340-347.
- Pandiarajan M., Rajendran S., Rathish J.R. Corrosion inhibition by potassium chromate-Zn2+ system mild steel in simulated concrete pure solution // Res. J. Chem. Sci. 2014. V. 4 (2). P. 49-55.
- Кузнецов Ю.И. Физико-химические аспекты ингибирования коррозии металлов в водных растворах // Успехи химии. 2004. Т. 73. N 1. С. 79-93.
- Сибиркин А.А., Замятин О.А., Чурбанов М.Ф. Взаимное превращение изополисоединений молибдена (VI) в водных растворах // Вестник Нижегородского университета им. Н.И. Лобачевского. 2008. N 5. C. 45-51.
- Krishnan C.V., Garnett M., Hsiao B., Chu B. Electrochemical Measurements of Isopolyoxomolybdates: 1. pH Dependent Behavior of Sodium Molybdate // Int. J. Electrochem. Sci. 2007. V. 2. P. 29-51.
Файлы: