Хрусталев Юрий Петрович , Бархатова Людмила Викторовна , Крупенев Егор Анатольевич , Чекан Михаил Андреевич
2017 / Том 21, №8 (127) 2017 [ ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ ]
ЦЕЛЬ. Рассматривается формализованная методика построения динамических стохастических моделей (АРСС) по экспериментальным данным. МЕТОДЫ. Обработка данных, получаемых в процессе функционирования динамической системы, предполагает использование двух режимов: первый режим - статическая обработка при наличии у исследователя всех экспериментальных данных; второй - динамическая обработка, когда оценка состояния динамической системы вычисляется в темпе поступления данных. На этапе статической обработки на основе экспериментальных данных строятся математические модели, описывающие процесс изменения вектора состояний во времени. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Проанализированы два класса оценок вектора состояния групповых эталонов физических величин: оценки метода наименьших квадратов (МНК-оценки) и оценки алгоритма субоптимальной фильтрации. Показано, что оценки второго класса более эффективны, их погрешность на 20-30% меньше, чем у оценок метода наименьших квадратов. Рассмотрен альтернативный подход к процедуре построения моделей АРСС. ВЫВОДЫ. Полученные в ходе исследования данные позволяют создать полностью формализованный программный комплекс, предназначенный для решения задачи оценивания состояния групповых эталонов по результатам измерений, выполняемых в процессе их функционирования.
Ключевые слова:
Библиографический список:
Файлы: