ИССЛЕДОВАНИЕ ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ ТРАНСПОРТНО-ТЕХНОЛОГИЧЕСКОГО СРЕДСТВА, ОСНАЩЕННОГО РОТОРНО-ВИНТОВЫМ ДВИЖИТЕЛЕМ, ПО ЗАБОЛОЧЕННОЙ МЕСТНОСТИ
Стрижак Аркадий Дмитриевич , Липин Алексей Александрович , Вишняков Анатолий Владимирович
2018 / Том 22 №3 (134) 2018 [ Машиностроение и машиноведение ]
ЦЕЛЬ данного исследования - выявить оптимальные конструктивные параметры транспортно-технологического средства (ТТС), оснащенного роторно-винтовым движителем (РВД), при его прямолинейном движении по заболоченной местности. МЕТОДЫ. Для визуализации результатов проведено компьютерное моделирование с помощью программного комплекса Microsoft Visual Studio 2012. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Итогом компьютерного моделирования, осуществленного на основе математического моделирования, является определение максимального значения скорости, Vmax , при разных значениях угла наклона лопасти РВД. ВЫВОДЫ. Полученные значения скоростей, представленные графически, показывают, что для всех случаев движения ТТС с РВД по заболоченному грунту максимальное значение скорости Vmax достигается при угле наклона винтовой линии 60º. Установлено, что при изменении угла наклона винтовой лопасти по сравнению с базовым углом наклона в 30º происходит увеличение Vmax в 2,68 раза.
Ключевые слова:
транспортно-технологическое средство, роторно-винтовой движитель, компьютерное моделирование, угол наклона винтовой лопасти
Библиографический список:
- Cole B.N. Inquiry into amphibious screw traction // Proceedings of the Institution of Mechanical Engineers. 1961. No. 19 (175). С. 919–940.
- Колотилин В.Е., Михеев А.В., Береснев П.О., Беляев А.М., Папунин А.В., Макаров В.С., Зезюлин Д.В., Беляков В.В., Куркин А.А. Статистическая модель выбора геометрических параметров, массово-инерционных и мощностных характеристик транспортно-технологических машин на роторно-винтовых движителях // Труды Нижегородского государственного технического университета им. Р.Е. Алексеева. 2015. № 3 (110). С. 156–208.
- Наумов В.Н., Машков К.Ю., Бяков К.Е. Моделирование прямолинейного движения транспортно-технологического средства с роторно-винтовым движителем // Известия вузов. Серия: Машиностроение. 2013. № 12. С. 31–35.
- Папунин А.В., Макаров В.С., Зезюлин Д.В., Беляков В.В. О влиянии ландшафта местности на характеристики снежного покрова и на проходимость транспортных средств // Труды НГТУ им. Р.Е. Алексеева. 2014. № 4 (106). С. 331–335.
- Полотно пути транспортно-технологических машин (справочные материалы к теории «машина – местность»); под общ. ред. В.В. Белякова и А.А. Куркина. Н. Новгород: Изд-во НГТУ, 2014. 447 c.
- Донато И.О., Жук В.А., Кузнецов Б.В. [и др.]. Роторно-винтовые машины. Основы теории движения. Н. Новгород: ТАЛАН, 2000. 451 с.
- Кошарный Н.Ф. Технико-эксплуатационные свойства автомобилей высокой проходимости. Киев: Вышейш. шк., 1981. 208 с.
- Липин А.А., Стрижак А.Д. Статистический прочностной расчет системы «шнек – грунт» // Наука сегодня: глобальные вызовы и механизмы развития: материалы Междунар. науч.-практ. конф. (Вологда, 26 апреля 2017 г.). В 2 ч. Вологда: Изд-во ООО «Маркер», 2017. Ч. 1. С. 17–19.
- Липин А.А., Вахидов У.Ш., Вишняков А.В. Стрижак А.Д. Исследование собственных частот колебаний роторно-винтовых движителей // Вестник ИжГТУ им. М.Т. Калашникова. 2017. Т. 20. № 4. С. 3–6.
- Зубов П.П., Макаров В.С., Зезюлин Д.В., Беляков В.В, Колотилин В.Е., Куркин А.А. Обзор существующих конструкций сочлененных гусеничных машин и рекомендации по выбору их параметров // Труды НГТУ им Р.Е. Алексеева 2015. № 2 (109). С. 170–176.
Файлы: