Зуенко Александр Анатольевич
2018 / Том 22, №7 (138) 2018 [ Информатика, вычислительная техника и управление ]
ЦЕЛЬ. Актуальность представленных исследований определяется важностью моделирования слабо формализованных предметных областей, знания о которых разнородны, носят как количественный, так и качественный характер. С появлением технологии программирования в ограничениях появились предпосылки для унификации совместной обработки разнородных ограничений предметной области, однако, на настоящий момент обработка качественных зависимостей реализуется недостаточно эффективно. Статья посвящена разработке способов экономного представления нечисловых ограничений, а также эффективных методов их удовлетворения. Исследования направлены на ускорение процедур комбинаторного поиска при решении задач удовлетворения ограничений в слабо формализованных предметных областях. МЕТОДЫ. Предлагаемые методы развивают теорию удовлетворения ограничений в части представления и повышения эффективности совместной обработки количественных и качественных зависимостей слабо формализованной предметной области. Для представления и обработки нечисловых (качественных) ограничений предметной области предполагается использовать специализированные матрицеподобные структуры ( С - и D -системы), а рассуждения на данных структурах реализовывать в форме процедур удовлетворения ограничений. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Сформулированы две теоремы о свойствах матрицеподобных структур и следствия из них, которые в совокупности с предлагаемыми правилами редукции позволяют успешно распространять нечисловые ограничения: выявлять в пространстве поиска подпространства допустимых и недопустимых присваиваний, проверяя лишь часть значений из области определения переменной. На основе следствий из упомянутых теорем разработаны модификации известных методов распространения ограничений, обеспечивающие достижение вершинной и дуговой совместностей для случая нечисловых ограничений. Данные модификации, в отличие от большинства аналогов, позволяют эффективно редуцировать задачу CSP, даже если она изначально не была представлена посредством совокупности лишь унарных и бинарных ограничений. ВЫВОДЫ. В работе предложен комплексный подход к представлению и обработке качественных зависимостей в слабо формализованных предметных областях, позволяющий обеспечить приемлемую скорость вычислений при исследовании предметных областей со сложными многочисленными связями.
Ключевые слова:
теория удовлетворения ограничений, распространение ограничений, матрицеподобные структуры, нечисловые ограничения, алгоритмы достижения совместности, нечисловые ограничения над конечными доменами
Библиографический список:
Файлы: