Ким Владимир Алексеевич , Якубов Чингиз Февзиевич
2018 / Том 22, №12 (143) 2018 [ МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ ]
Рассмотрено строение диссипативной структуры контактного взаимодействия при резании металлов и механизм ее функционирования. Исследования проводились при точении стали 45, нержавеющей стали 12Х18Н10Т и титанового сплава ВТ22 резцами из быстрорежущей инструментальной стали Р6М5. Морфология поверхностного слоя режущего клина инструмента изучалась с помощью растрового электронного микроскопа. Усадка стружки определялась весовым методом. Деформационное состояние зоны стружкообразования анализировалось по микроструктуре корней стружки. Цифровые изображения микроструктур анализировались с помощью компьютерной металлографии. Диссипативная структура контактно-фрикционного взаимодействия состоит из островковых и сплошных наростов, плотно сцепленных с поверхностью режущего клина, упрочненного подповерхностного слоя и адсорбционных пленок на наружной поверхности наростов. Основные свойства диссипативной структуры определяются законами неравновесной термодинамики, а их функционирование связано с трансформацией энергии контактного взаимодействия в тепло и рассеивания ее в окружающей среде, а также минимизации влияния энергетического воздействия деформационного процесса стружкообразования на состояние режущего клина. В период установившегося процесса контактного взаимодействия или квазистационарного состояния основные диссипативные процессы реализуются за счет фрикционного взаимодействия между наружной поверхностью наростов и сходящей стружкой. Активность диссипативного процесса определяется коэффициентом трения, который принимает различные значения в зависимости от структурного состояния поверхностного слоя нароста и наличия на нем адсорбционной пленки. Чем полнее процесс диссипации, тем меньше энергии затрачивается на изнашивание режущего клина и выше стойкость режущего инструмента. Смазочно-охлаждающая технологическая среда при резании активно влияет на состояние диссипативной структуры за счет образования устойчивых адсорбционных пленок, понижающих коэффициент трения между сходящей стружкой и режущим инструментом. Снижение коэффициента трения приводит к уменьшению контактных напряжений, а это вызывает изменение напряженно-деформированного состояния всей деформационной области стружкообразования. Предложена архитектоника диссипативной структуры контактно-фрикционного взаимодействия при резании металлов и механизм ее функционирования. В период квазистационарного протекания резания диссипация в зоне вторичных пластических деформаций реализуется за счет разных режимов фрикционных процессов между сходящей стружкой и наружными поверхностями наростов. Влияя на характер фрикционного процесса, можно управлять стойкостью режущего инструмента и качеством механической обработки.
Ключевые слова:
неравновесный процесс,диссипативная структура,пластическая деформация,коэффициент трения,режущий инструмент,нарост,стойкость,non-equilibrium process,dissipative structure,plastic deformation,friction coefficient,cutting tool,growth,durability
Библиографический список:
Файлы: